Self-illuminating quantum dots for non-invasive bioluminescence imaging of mammalian gametes
نویسندگان
چکیده
BACKGROUND The fertility performance of animals is still a mystery and the full comprehension of mammalian gametes maturation and early embryonic development remains to be elucidated. The recent development in nanotechnology offers a new opportunity for real-time study of reproductive cells in their physiological environments. As a first step toward that goal, we evaluated the effectiveness of a fluorescent and luminescent nanoparticle for in vitro and ex vivo imaging of porcine gametes. METHODS Freshly harvested boar sperm were labeled with red-shifted (655 nm) quantum dot nanoparticles conjugated (QD+) or not (QD-) with plasminogen antibody and evaluated. Subsets of labeled spermatozoa were loaded into straws and placed within the lumen of gilt reproductive tracts for ex vivo intra-uterine imaging. Porcine cumulus-oocyte complexes (COCs) were matured in the presence of QD- or QD+. Ovarian follicles were microinjected with QD- or QD+ and placed in culture for up to 4 days. After labeling, all samples were supplemented with coelenterazine, the luciferase substrate, and immediately submitted to bioluminescence analysis, followed by fluorescence and hyperspectral imaging. Data were analyzed with ANOVA and P < 0.05 indicated significant differences. RESULTS All labeled-samples revealed bioluminescence emission that was confirmed by fluorescence and hyperspectral imaging of the QD localization within the cells and tissues. Over 76% of spermatozoa and both immature and mature COCs were successfully labeled with QD- or QD+. The QD- fluorescence appeared homogenously distributed in the oocytes, while found in the entire sperm length with a higher accumulation within the mid-piece. Labeled-follicles exhibited a progressive migration of QD nanoparticles within the follicle wall during culture. In contrast, QD+ fluorescence signals appeared condensed and stronger in the follicle cells, sperm head, and sub-plasma membrane area of mature oocytes. Weaker QD+ signals were detected in the cumulus cells. Fluorescence and hyperspectral microscope imaging showed comparable intracellular QD localization. Ex-vivo intra-uterine bioluminescence imaging of labeled spermatozoa revealed stronger signals captured over the oviducts, with uterine body allowing the lowest signal detection. CONCLUSION Findings indicate that conjugated and non-conjugated fluorescent nanoparticles can be used for effective labeling of mammalian gametes for in vitro monitoring and potential in vivo targeted-imaging.
منابع مشابه
Self-Illuminating 64Cu-Doped CdSe/ZnS Nanocrystals for in Vivo Tumor Imaging
Construction of self-illuminating semiconducting nanocrystals, also called quantum dots (QDs), has attracted much attention recently due to their potential as highly sensitive optical probes for biological imaging applications. Here we prepared a self-illuminating QD system by doping positron-emitting radionuclide (64)Cu into CdSe/ZnS core/shell QDs via a cation-exchange reaction. The (64)Cu-do...
متن کاملSpectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging
Introduction Non-invasive Fluorescent Reflectance Imaging (FRI) is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical...
متن کاملImproved QD-BRET conjugates for detection and imaging.
Self-illuminating quantum dots, also known as QD-BRET conjugates, are a new class of quantum dot bioconjugates which do not need external light for excitation. Instead, light emission relies on the bioluminescence resonance energy transfer from the attached Renilla luciferase enzyme, which emits light upon the oxidation of its substrate. QD-BRET combines the advantages of the QDs (such as super...
متن کاملSelf-illuminating quantum dots for highly sensitive in vivo real-time luminescent mapping of sentinel lymph nodes
Quantum dots (QDs) show promise as novel nanomaterials for sentinel lymph node (SLN) mapping through their use in noninvasive in vivo fluorescence imaging, and they have provided remarkable results. However, in vivo fluorescence imaging has limitations mainly reflected in the strong autofluorescence and low deepness of tissue penetration associated with this technique. Here, we report on the us...
متن کاملBioluminescence resonance energy transfer coupled near-infrared quantum dots using GST-tagged luciferase for in vivo imaging.
Bioluminescence resonance energy transfer coupled near-infrared quantum dots using glutathione-s-transferase (GST) tagged luciferase were synthesized as luminescent probes for in vivo imaging.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2015